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Energy e!ciency in a channel model
for the spiking axon
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Abstract

We examine the spiking axon as a communication channel. We develop a "rst principles
channel model that encompasses the noise in the axon, which manifests itself as spike jitter,
and the power consumption, which arises from the activity of the Na+–K+ pump. This model
enables us to examine the trade-o# between the information rate and power consumption. Using
parameters from the frog myelinated axon, we determine the spike rate that corresponds to the
maximum energy e!ciency. This spike rate is consistent with experimental observations, which
suggests that neural communication may have developed to maximize energy e!ciency rather
than information rate alone.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, several researchers have suggested that energy e!ciency is a guiding con-
straint in the evolution of neural systems [3,9,2,7]. In this paper, we examine the energy
e!ciency of spike communication over a myelinated axon. We determine the most en-
ergy e!cient way to communicate information and compare this result to experimental
observations. We also explore how fundamental biophysical parameters contribute to
the energy e!ciency by means of a scaling analysis.
Energy e!ciency can be expressed as a function of signal properties, such as the

interspike interval (ISI) distribution, and channel properties, such as the behavior of
ion channels. In Section 2, we set up the optimization problem that yields the signal
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properties corresponding to optimal usage of the axon. In Section 3, we determine
the channel properties by developing biophysical models of the spike jitter and power
consumption. In Section 4, we describe the optimization results and the scaling analysis.
In Section 5, we discuss the results and conclude the paper.

2. Optimizing signal properties for energy e!ciency

In this work, we examine the myelinated axon as a communication channel. The
input X is the spike train that is generated at the soma. The output Y is the spike train
that emerges from the axon into the presynaptic region. Our energy e!ciency metric
E (units of bits=ATP) is given by the ratio of the information rate through the axon
R (units of bits=s) and the power consumption of the axon P (units of ATP=s) [9]:

E=R=P: (1)

We do not know a priori what aspect of the spike trains X and Y carry information.
An upper bound on the amount of information a spike train can carry can be determined
by considering solely the ISIs, as a list of successive ISIs is su!cient to reconstruct
the spike train in its entirety [1]. Our work makes use of this upper bound, so the
signal is the ISI, and the noise is anything that alters the ISI, which we term ISI jitter.
In this context, the mutual information (in bits=symbol) is given by

I(X ;Y ) = h(Y )− h(Y |X ) = h(Y )− h(N ) (2)

where h· indicates di#erential entropy. To obtain the upper bound on the information
rate, we make the assumption that the ISIs are independent. In this case, the information
rate R is simply the product of the mutual information and the spike rate ! (the number
of symbols per second):

R= ![h(Y )− h(N )]: (3)

The energy e!ciency E becomes

E= ![h(Y )− h(N )]=P(!); (4)

where we write P(!) to show that the power consumption is a function of spike rate.
The maximum energy e!ciency E∗ is given by

E∗ = max
fY (!)

![h(fY (!))− h(fN )]=P(!) = !∗[h(f∗
Y (!

∗))− h(fN )]=P(!∗); (5)

where f∗
Y (·) and !∗ are respectively the ISI distribution and mean spike rate that realize

the maximum energy e!ciency. In order to maximize E, h(fY ) must be as large as
possible. Therefore, we choose the distribution that maximizes h(fY ) for a "xed spike
rate !. In the presence of a refractory period tref , f∗

Y is given by a shifted exponential
interspike interval distribution with corresponding entropy [1]

h(f∗
Y ) = log2[e(1− !∗tref )=!∗]: (6)

The maximum energy e!ciency becomes

E∗ = !∗{log2[e(1− !∗tref )=!∗]− h(fN )}=P(!∗): (7)
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Now, !∗ is the only remaining free parameter. In order to "nd its value, we need to
"ll in the (unknown) "xed parameters of Eq. (7). They are fN , the distribution of the
ISI jitter, and P(·), the relationship between the power consumption and the spike rate.
To do this, we must examine a biophysical model of the axon.

3. A channel model for the myelinated axon

We formulate a model of the ISI jitter in the myelinated axon based on ion channel
stochasticity at the node of Ranvier [12]. The stochastic behavior of the ion channel
population can be described by binomial statistics: For N channels, each with a single
channel current $– and probability of being open p, the coe!cient of variation (CV) of
the channel current is given by

"I =#I =
√

N $– 2p(1− p)=N $–p ≈ 1=
√

Np (p!1): (8)

Variability decreases as the number of ion channels increases, as the stochastic behavior
of individual ion channels is averaged out.
Analysis of the mechanism of spiking at the node of Ranvier reveals that the spike

time is vulnerable to the stochastic Na+ current only during a very brief “stochastic
interval” during the rising phase of the action potential (Fig. 1(a) and (b)). The duration
of this interval is given by T =C$=I , where C is the node capacitance, $ is the range
of voltages that delimit the interval, and I is the stochastic Na+ current during the
interval. Because the time constant of the channel noise is large compared to the
threshold crossing time (Fig. 1(c)), we model I as constant during a particular interval
but variable between intervals.
Because I is a binomial r.v. and N is large, we can approximate I as Gaussian.

Then the distribution of T is given by the inverse of a Gaussian r.v. [8,13]. This
yields a spike time distribution that is approximately Gaussian with standard deviation
"T=C$"I =#2I (derivation omitted) where #I and "I are the mean and standard deviation
of the current during the rising phase of the action potential. The CV of the spike time
is given by

"T =#T = (C$"I =#2I )=(C$=#I ) = "I =#I ≈ 1=
√

Np: (9)

This means that the CV of the spike time is equal to the CV of the ion channel
noise, implying that the scaling behavior of ion channel noise extends to spike time
variability.
We can relate the spike jitter at a single node to the ISI jitter for the entire "ber by

"ISI = (2M)1=2"T where M is the number of nodes in the "ber. The factor of 2 arises
because the interspike interval is made up of two spikes. The entropy of the ISI jitter
distribution, h(fN ), is given by the entropy of a Gaussian distribution with variance
"2ISI.
We can test the validity of the spike jitter model by comparing it to measured

values of ISI jitter in the frog myelinated axon. Using values of $, #I , and "2I from
Hodgkin–Huxley simulations of the node of Ranvier, we obtain "ISI = 35 "s. The
only measurement of ISI jitter in this system was made by Lass and Abeles [6], who
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Fig. 1. The stochastic behavior of Na+ channels is only relevant during a brief interval. Data generated by
a Hodgkin–Huxley simulation. (a) I–V curve of the rising phase of the action potential. The × denotes
a stable equilibrium point, corresponding to the resting state, and the ♦ denotes an unstable equilibrium
point, corresponding to the spiking threshold [10]. The region of negative conductance is indicative of the
positive feedback action of the Na+ channels. We model the spike time as vulnerable to Na+ channel noise
only during the “stochastic interval” de"ned from the start of the positive feedback to the spiking threshold
(shaded area). (b) The action potential with the stochastic interval (shaded region) superimposed. (c) The
Na+ channel noise time constant during the action potential (derived from a kinetic model [5]). The gray
box represents the duration of the stochastic interval.

obtained "ISI =6 "s. There are many reasons for the discrepancy, including uncertainty
in the number of ion channels and variability across di#erent frog species.
In the myelinated axon, there are two sources of power consumption: the energy

expended by the Na+–K+ to counteract the passive leak of ions across the membrane
(resting cost) and the energy used by the pumps to restore the concentration gradients
following an action potential (signaling cost). Power consumption can be expressed as

P = a!+ b; (10)

where a is the ATP expended per spike, ! is the spike rate, and b is the ATP expended
per second due to resting costs. The values of these constants can be determined by
considering the stoichiometry of the Na+–K+ pump [14].

4. Results

The expression for the maximum energy e!ciency becomes

E∗ = !∗{log2[e(1− !∗tref )=!∗]− (1=2) log2(2%e"2ISI)}=M (a!∗ + b): (11)

The models of Section 3 enable us to derive the values for all of the channel parameters
in Eq. (11) (given in the caption of Fig. 2). The only remaining free parameter is
the optimal spike rate, which is found numerically. The information rate and energy
e!ciency are plotted as functions of spike rate in Fig. 2(a) and (b), respectively. The
maximum information rate, i.e. the information capacity, is given by the peak of the
curve in Fig. 2(a), whereas the maximum energy e!ciency is given by the peak of
the curve in Fig. 2(b). It is clear that spike rates corresponding to the two maxima are
distinct.
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Fig. 2. Information rate and energy e!ciency as a function of spike rate. Parameters as follows: "ISI =35 "s,
tref = 3 ms, a = 6:42 × 105 ATP=spike, b = 3:69 × 107 ATP=s, M = 72 nodes. The point corresponding to
the maximum energy e!ciency is denoted by the ∗ (117 Hz), and the point corresponding the information
capacity is denoted by the ♦ (230 Hz). (a) Information rate as a function of spike rate. (b) Energy e!ciency
as a function of spike rate.

We are also interested in understanding of how fundamental biophysical parameters
a#ect the energy e!ciency. We must perform this analysis with caution; we cannot vary
parameters at will because the kinetics of the Hodgkin–Huxley equations are voltage-
dependent. Therefore, the membrane potential of the axon must remain constant while
the parameters are varied. Rushton’s principle of corresponding states provides us with
way to do this: we scale the "ber diameter, nodal area, and inter-node distance by a
factor S, while keeping all of the speci!c properties of the "ber constant [11].
The absolute number of ion channels increases with S, so ISI jitter goes as S−1=2

(Eq. (9)). This gives rise to a logarithmic increase in the information rate. The power
consumption is proportional to the number of ions displaced, which increases propor-
tionally with the nodal area and in turn S. These trends alone are not a priori su!cient
to establish the scaling behavior of E∗ because the spike rate ! is a free parameter.
Therefore, for each value of S, we numerically determined E∗ and !∗. Over the scales
we examined (S = [0:1; 10]), !∗ had the relatively narrow range of 95 and 135 Hz. If
we approximate ! as constant, then it becomes clear that as S increases, the denomi-
nator P∗ grows faster (linearly) than the numerator R∗ (logarithmically), causing E∗

to decrease. These trends were veri"ed numerically.

5. Discussion and conclusions

We have found that energy e!cient use of the spiking axon corresponds to a shifted
exponential ISI distribution with a mean spike rate of 117 Hz. In order to compare the
form of the distribution with neurophysiological data, we need to consider the spiking
statistics of the frog myelinated axon over the ensemble of natural behaviors. While
this may prove di!cult, the mean spike rate is much easier to measure. Indeed, spike
rates of 100 Hz are typical of the frog myelinated axon [4], suggesting that this system
may have developed to maximum energy e!ciency rather than information rate alone.
We examined the scaling behavior of this system and found that despite the fact

that jitter is reduced by increasing the number of ion channels participating in spike
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generation, the bene"ts of having more ion channels does not outweigh the accompany-
ing power consumption cost. Our results can be interpreted to mean that for transmitting
information over proportional distances, smaller axons are more energy e!cient.
In this work, we examined axonal communication only. Spike communication en-

tails the transformation of analog information to and from spikes, and the noise and
power consumption associated with these processes can considerably a#ect the energy
e!ciency. In order to gain a more complete understanding of spike communication,
we are currently performing similar analyses of spike encoding and decoding.
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